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Mental States and Machine: Enhancing Driver Engagement in Automated Vehicles
for Safer Transitions

Abstract

The current automated vehicles are not perfect, which means that human intervention, known
as a takeover, is still necessary. For signaling takeover requests, informative (contralateral) dis-
plays were investigated and proven effective compared to instructional (ipsilateral) displays. How-
ever, how drivers interpret the information can vary based on the driver’s mental state, which
remains unclear in earlier research. To address this, the current study aims to investigate the effect
of modality (visual and tactile signal), scenario (lane-changing and lane-keeping scenario), mental
state (control (baseline), anger, sadness, happiness, internal distraction (mind-wandering), external
distraction, and fatigue), on the takeover performance and physiological data. As an exploratory
pilot study, six participants were engaged in the current study. Three participants were assigned to
the scenario with a visual takeover request, while the other three were assigned to the scenario
with a tactile takeover request. The results reveal that lane-keeping was associated with lower
decision-making accuracy than lane-changing scenarios. Additionally, the tactile signal request
had marginally higher decision-making accuracy than the visual signal. Lastly, the visual signal
was associated with a marginally greater change in wrist joint angle compared to the tactile signal
in a lane-keeping scenario. Overall, the findings of this study could guide the development of
human-machine interfaces to enhance safety under various mental states in future automated ve-
hicles.

List of Key Terms
Driver Mental State, Takeover Request, Human-machine Interface, Safety, Automated Driving

Chapter 1: Introduction and Background

The development of automated vehicles has gradually matured in recent years. Some auto-
mated assistance features have begun to be integrated into vehicles, such as Tesla Autopilot or Full
Self-Driving (Supervised) (Yang et al., 2023). However, the current level of automated vehicles
(SAE L3) has its limitations, and due to ethical and technological concerns (Cascetta et al., 2022;
Fagnant & Kockelman, 2015), full automation (SAE L5) seems unlikely in the near future. There-
fore, when the automated vehicle reaches its operational limits (e.g., lane markings missing or
unexpected accidents), human intervention is still necessary (Chu et al., 2020; Deo & Trivedi,
2018). This intervention is known as a takeover, which has two main phases, each phase consisting
of several steps (Huang & Pitts, 2022a; Petermeijer et al., 2016) (Figure 1). After the automated
system delivers the takeover request, drivers are required to perceive these warnings and process
the information accordingly. Next, the driver must adjust their position and prepare to regain man-
ual control (e.g., placing their foot on the pedal and their hands on the steering wheel). Once the
transition is complete, the driver will execute the appropriate action. The takeover task requires
significant perception and cognitive ability; however, drivers have only a few seconds to take the
right action to prevent a collision or maintain control of the vehicle (Huang & Pitts, 2022a;
McDonald et al., 2019). Therefore, ensuring a safe and smooth transition during the takeover is
crucial. To achieve this, previous studies suggest that developing an effective takeover request
interface is a promising solution (McDonald et al., 2019).



- Signal Respnose Phase "'I--' Post-takeover Phase  *==

Signal perception and processing Cognitive processing and decision making Action execution
Warning: Takeover Reposition: Foot on pedal;
Request Hands on steering wheel

Figure 1. The takeover model (adapted from Huang & Pitts, (2022b) and Petermeijer et al.
(2016)).

1.1 Meaningful Human-Machine Interface for Takeover Requests

According to the previous literature review (Martinez & Huang, 2022), there are two typical
human-machine interfaces (HMIs) designed to present meaningful information regarding takeover
requests that represent complex driving situations during a takeover (Figure 2): (1) instructional
(ipsilateral) display. This interface design is based on stimulus-response compatibility (SRC) (Fitts
& Deininger, 1954; Proctor & Reeve, 1990), and indicates that the signal aligns spatially with the
needed action (e.g., Lo & Huang, 2024, 2025; Meng et al., 2015; Petermeijer et al., 2017). Instruc-
tional displays provide navigational guidance, including whether to turn left or right, as well as
cues for speed regulation, such as acceleration and deceleration. For example, they may show an
arrow icon to indicate recommended maneuver directions. (2) Informative (contralateral) display.
This interface design is the opposite of the ipsilateral display, meaning that the signal does not
align spatially with the needed action (reversed SRC) (e.g., Chu et al., 2024; Huang & Pitts, 2023;
Martinez & Huang, 2024). Informative displays provide details about the driving environment,
including the location and status of nearby vehicles or pedestrians. For example, displaying an
obstacle icon to represent the dangerous surroundings. Previous studies have shown that, in the
context of a takeover request, informative displays were associated with better takeover perfor-
mance when compared to instructional displays. For instance, Martinez & Huang (2024) examined
how takeover requests impact younger and older adults in a lane change scenario, focusing on
different modalities (tactile versus visual-tactile) in both instructional (ipsilateral) and informative
(contralateral) displays. The results indicated that an informative display was associated with
higher situation awareness and faster information processing time compared to an instructional
display. Similarly, Huang and Pitts (2023) investigated the effects of baseline, instructional, and
informative signals on vibrotactile takeover requests while the driver was required to perform a
lane change during the takeover. The findings showed that the instructional signal performed
worse (e.g., longer response time and larger maximum resulting acceleration) in takeovers com-
pared to the baseline signals. However, despite the informative display seeming to be an effective
takeover request, the impact of such requests under different mental states needs further
investigation. This gap is critical, as earlier research indicates that a driver’s mental state can
significantly affect how they interpret and respond to information (Hameed & Sarter, 2009). For
example, forward collision warning systems are more beneficial for visually distracted drivers than
for those who are not (Abe et al., 2011).



(1) Instructional display (2) Informative display

Turn to the available Obstacles ahead are
left lane on the right

Figure 2. Two common human-machine interfaces (HMIs) for presenting information.

1.2 Impact of Driver Mental States on Takeover Performance in Automated Driving

In addition to information interpretation, drivers’ mental states (Figure 3) including emotions,
distractions, or fatigue, may negatively impact their performance (e.g., longer reaction times)
(Jafarpour & Rahimi-Movaghar, 2014). For example, emotions play a significant role in negatively
impacting driver performance. Previous research has indicated that such emotional states, includ-
ing anger, sadness, and crying, increase the risk of a crash by nearly 9.8 times (Dingus et al., 2016).
This pattern is also observed in automated driving scenarios. Previous studies have demonstrated
how the two dimensions (i.e., valence and arousal (Russell, 1980)) of the emotion affect takeover
performance. For example, Du et al. (2020) investigated the effect of emotion on takeover perfor-
mance, with thirty-two participants participating in the driving simulator study. In this study, eight
4-minute movie clips were used to induce different emotions (i.e., Sadness, Anger, Happiness, and
Calmness). Results showed that the positive valence emotions (i.e., happiness) were associated
with better takeover quality (e.g., smaller maximum resulting acceleration and a smaller maximum
resulting jerk) compared to other emotions. In addition to emotional factors, 68.3% of all crashes
were associated with significant distractions, with engaging in non-driving-related tasks being one
of the primary reasons for these distractions (Oviedo-Trespalacios et al., 2016). Previous studies
indicated that talking on the phone while driving increases the crash risk by a factor of four
(Redelmeier & Tibshirani, 1997). Although drivers do not need to perform driving tasks in highly
automated vehicles, the distractions caused by non-driving-related tasks also pose safety concerns
in these vehicles. For example, Eriksson & Stanton (2017) compared the takeover performance in
a scenario involving external distractions (i.e., reading a newspaper) with a scenario without dis-
tractions (i.e., monitoring the system) with twenty-six participants. The findings indicated that
when performing the secondary task (i.e., with external distraction), the reaction time for takeovers
was significantly longer than in the scenario without the secondary task. Besides emotional factors
and distractions, fatigue also plays a significant role in traffic accidents (Zhang et al., 2016). Pre-
vious reports revealed that fatigued driving accounts for 16.5% of fatal accidents and 12.5% of
injury-related collisions in the U.S. (Tefft, 2010). Given that prolonged and monotonous auto-
mated driving can lead to fatigue (Korber et al., 2015), understanding how fatigue affects takeover
performance is also critical. Jarosch et al. (2019) investigated how task-related fatigue affects take-
over performance during extended conditional automated driving involving seventy-three partici-
pants. The results showed that performing takeover tasks after prolonged automation correlates
with worse takeover performance (e.g., longer reaction times) compared to performing takeover
tasks after short automation. Although previous studies have separately explored the impact of



different mental states on takeover performance, these effects have not been concurrently evalu-
ated within a single experimental framework. In addition to the mental state, the effectiveness of
takeover requests may be significantly affected by the scenarios in which an automated vehicle is
encountered (Du et al., 2024; Naujoks et al., 2021). For example, Yun and Yang (2020) reveal that
the reaction time for exact takeover requests was slower when the vehicle planned to exit the high-
way than when it faced a sudden obstacle. However, earlier studies of informative takeover re-
quests primarily focused on one specific scenario, lateral steering scenarios, which require the
driver to make a lane change during takeover; the effectiveness of informative displays in longi-
tudinal braking scenarios, which require the driver to brake or reduce the speed during takeover,
remains unknown.

Emotion Distraction Fatigue
5% \/ O
O % 9@ =z
|__| /
External Mind-

Happy Sad Angry fatigue

Distraction wandering

Figure 3. Emotion at three levels (anger, sadness, happiness), internal distraction (mind-
wandering), external distraction, and fatigue.

Therefore, the goal of this study was to evaluate the impact of informative takeover requests
on takeover performance in lateral (i.e., lane-changing) and longitudinal (i.e., lane-keeping) sce-
narios across various mental states. Participants were divided into two groups and presented with
an informative takeover request in different modalities (i.e., visual and tactile). They were required
to perform a takeover task in a driving simulator in a two-lane urban scenario. Both groups expe-
rienced scenarios corresponding to seven mental states (i.e., control (baseline), emotion at three
levels (anger, sadness, happiness), internal distraction (mind-wandering), external distraction, and
fatigue). They were asked to make a decision based on the traffic situation, either to change lanes
or stay in the lane. The findings of this study could help develop human-machine interfaces that
enhance safety across different mental states and scenarios for future automated vehicles.

Chapter 2: Methodology

2.1 Participants

This study included six college students who were recruited through San Jose State Univer-
sity’s Research Pool (SONA) system. As part of a larger-scale ongoing study, this pilot study
recruited six participants: three in the visual signal group (mean age = 19.33, mean driving expe-
rience = 2 years) and three in the tactile signal group (mean age = 20.33, mean driving experience
= 3 years). For compensation, each participant received four hours of class credit for their time
and participation. All participants must meet the following inclusion and exclusion criteria: (1)
possess a valid driver’s license, (2) drive at least once a week, (3) have no cognitive or neurological
impairments affecting touch, (4) have normal or corrected-to-normal vision, and (5) report no mo-
tion sickness symptoms. This study received approval from the Institutional Review Board of San
Jose State University (IRB Protocol ID: 23-388).



2.2 Apparatus

This experiment includes the following devices to collect data and conduct the experiment:

Driving Simulator. The fixed-base medium-fidelity driving simulator — miniSim (Figure 4),
developed by the University of lowa Driving Safety Research Institute (DSRI), was utilized in this
experiment. This system features three 42-inch monitors (1920 x 1080) to showcase the simulated
driving environment, along with an 18.5-inch monitor functioning as the in-vehicle dashboard.
Additionally, the system features various accessories, including driving pedals (accelerator and
brake), a steering wheel, and a standard adjustable driver's seat for a realistic driving simulation.
The driving data were recorded at 60 Hz.

Figure 4. Experimental apparatus.

Visual and tactile signals (Figure 5). The visual signal (V) was a 400 x 300 pixel icon, com-
bined with the black road and red pedestrian vector graphics, presented in the center of the wind-
shield. The tactile signal (T) was delivered through six C-2 tactors (developed by Engineering
Acoustics, Inc., with dimensions of 1" x 0.5" % 0.25") positioned on the seat belt. Specifically,
three tactors were located on the right side, while three were on the left. The frequency of the
tactile feedback was set to 235 Hz (Wersényi, 2022).



(a) Visual

Visual Feedback for Right Side Visual Feedback for Left Side
ﬂz :h
(b) Tactile
Tactile Feedback for Right Side Tactile Feedback for Left Side

Figure 5. (a) Visual and (b) tactile signals.

Eye Tracking (Figure 6a). This study employed the Tobii Pro Fusion eye-tracking system (To-
bii Technology AB, Sweden). The eye movement data were recorded at 60 Hz. The pupil size,
measured in millimeters, is calculated from the camera image, referencing the distance between

the sensor and the eyes.
Skin Response and Optical Pulse Sensor (SROPS) (Figure 6b). This study utilized the Shim-
mer3 GSR+ unit (Shimmer, MA, USA), which collects Galvanic Skin Response (GSR) and skin

temperature data at a rate of 60.01 Hz.

Motion Capture System (Figure 6¢). This study utilized the Xsens Motion Tracking System
(MTw Awinda, Movella Inc., Henderson, NV, USA) to capture human movement. This system
captures movement data at 60 Hz from seventeen inertial sensors placed on participants' bodies,
from head to toe, specifically focusing on joint angles, segment positions, and changes in dynamic
orientation.

(a) Tobii Pro Fusion eye-tracking (b) Shimmer3 GSR+ unit (c) Xsens Motion Tracking System

Figure 6. (a) Eye tracker; (b) SROPS; (c) Motion capture.
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2.3 Procedure

Once participants agreed to participate in the study and finish the consent form, they were
given an overview of the study and were required to complete the pre-experiment questionnaire.
Participants were randomly assigned to the scenario with visual or tactile signals and asked to wear
the physiological device. Afterward, they engaged in a 20-minute training session to familiarize
themselves with the takeover task and the experimental device. During the experiment, upon re-
ceiving an informative takeover request, participants were required to press the brake first, assess
the traffic situation, and decide whether to change lanes or stay in their current lane. Once they
decided, they needed to press one of two buttons corresponding to their chosen action: one button
indicated lane-changing, while the other referred to lane-keeping. During the main experiment,
each participant completed eight drives: six short drives (control (baseline), anger, sadness, hap-
piness, internal distraction, and external distraction) lasted about seven minutes with two takeover
events and two prolonged (fatigue) drives, which were approximately twenty minutes and included
one takeover event (e.g., lane-changing or lane-keeping) (Figure 7). To prevent the order effect,
the sequence of short and long drives was randomized. In both lane-changing and lane-keeping
scenarios, participants received only the informative signal as a takeover request, meaning that
both the visual and tactile displays indicated only the obstacles in the environment (Figure 5). The
scenario involving the visual takeover request was displayed on the windshield, featuring a red
pedestrian icon to indicate the location of the approaching obstacle (Figure 5a). Similarly, the sce-
nario with the tactile signal was delivered through the seatbelt, accompanied by a three-stroke
vibration warning (Carcedo et al., 2016; Liao et al., 2016) on either the right or left side to show
where the obstacle is approaching (Figure 5b).

In addition to the control (baseline) scenario, which represented normal driving conditions
without any added stimuli, several methods from previous studies were used to induce different
mental states for each scenario. For the drive with the emotion state, participants listened to music
suited to each state: anger (Holst - The Planets (Maciantowicz & Zajenkowski, 2021)), sad (Chopin
- 24 Preludes, Op. 28 (Poon & Schutz, 2015)), and happy (Bach - Orchestral Suite No. 1 in C
Major (Park et al., 2019)). For external distraction, the operator asked random questions and kept
the conversation going until the drive ended, while participants were expected to engage thought-
fully (Heenan et al., 2014). In contrast, mind-wandering involved questions played by the speaker
every 20 seconds (to induce task-irrelevant thoughts), with no need for responses (Huang et al.,
2019). During two long, fatigue-inducing drives, automated driving lasted at least twenty minutes
before the takeover event (Thiffault & Bergeron, 2003). To minimize cumulative fatigue and in-
teraction effects between mental states, S-minute breaks were implemented between each drive
(Figure 7). During these breaks, participants were asked to complete NASA-TLX questionnaires
regarding the drive they had just completed. Once all eight drives were finished, participants were
asked to complete the post-experiment questionnaire. Overall, the study lasted approximately 200
minutes.

11
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Figure 7. The design and procedure of the experiment (LC=lane-changing, LK=lane-keeping).

2.4 Dependent variable

2.4.1 Takeover performance

Three dependent variables were used to assess takeover performance (McDonald et al., 2019).
Reaction time (in seconds) (Dogan et al., 2017) measured the duration from the start of the takeo-
ver request until participants deactivate automation. By pressing the brake pedal, participants de-
activate automation, allowing us to measure how quickly they perceive and process takeover re-
quests (i.e., visual or tactile signals). Next, decision-making time, known as indicator time (in
seconds) (Li et al., 2018), measured how long it takes participants to decide whether to change
lanes or remain in their lane, followed by pressing one of the two predefined buttons that corre-
spond to their chosen action. Lastly, the decision-making accuracy evaluated participants’ ability
to accurately identify and press the correct buttons for the appropriate actions in a given scenario.

2.4.2 Physiological data

In addition, five dependent variables were used to assess physiological data. A 5-second ob-
servation window was used to measure all physiological data (e.g., Gruden et al., 2024; Liao et al.,
2025), comparing the average values from the 5 seconds before the takeover request was activated
to the average values from the 5 seconds after the driver reactivated the automation mode. For the
eye-tracking data, pupil dilation was used to estimate pupil size (in millimeters). The skin response
data included galvanic skin response (GSR) and skin temperature. Motion data captured the flexion
angles of the right wrist and right ankle. Wrist flexion (+) refers to curling the wrist toward the
palm, whereas wrist extension (—) refers to moving the hand back toward the forearm. Similarly,
ankle dorsiflexion (+) refers to lifting the foot toward the shin, while ankle plantarflexion (—) in-
volves pointing the foot downward toward the shin.

2.5 Data analysis

This study employed a 2 (signal modality: visual and tactile signal) x 2 (scenario: lane-chang-
ing and lane-keeping scenario) x 7 (mental state: control (baseline), emotion at three levels (anger,
sadness, happiness), internal distraction (mind-wandering), external distraction, and fatigue) full
factorial design. The independent variables included signal modality (between-subjects), scenario
(within-subjects), and mental state (within-subjects). The dependent variables included takeover
performance (i.e., reaction time, decision-making time, and decision-making accuracy) and phys-
iological data (i.e., pupil diameter, right wrist joint angle, right ankle joint angle, GSR, and skin
temperature). For reaction time, decision-making time, and physiological data, differences across
modality, scenario, and mental state were analyzed using a three-way mixed analysis of variance

12



(ANOVA). In addition, a post hoc analysis with Bonferroni correction was conducted to assess
significant differences and interactions across multiple comparisons. For decision-making accu-
racy, differences across modality, scenario, and mental state were analyzed using a generalized
linear mixed model (GLMM) with a binomial distribution and logit link function. Statistical anal-
yses were conducted using SPSS, with significance set at p < 0.05. Partial eta squared (n,°) served
as the measure of effect sizes.

Chapter 3: Results and Discussion

3.1 Takeover performance

There was a significant main effect of scenario (%> (1) = 4.98, p = .029) on decision-making
accuracy (Error! Reference source not found.). In particular, lane-changing scenarios (mean (M) =
0.987, standard error of the mean (SEM) = 0.019) were correlated with higher decision-making
accuracy than lane-keeping scenarios (M = 0.869, SEM = 0.121). In addition, there was a margin-
ally significant effect of modality (y* (1) = 3.21, p = .077) on decision-making accuracy. Specifi-
cally, tactile signals (M = 0.98, SEM = 0.026) resulted in slightly greater decision-making preci-
sion than visual signals (M = 0.907, SEM = 0.094). However, no significant main effect of mental
state on decision-making accuracy was found.

We also investigated how modality, scenario, and mental state influence reaction and decision-
making times. However, none of these factors had a significant impact on reaction or decision-
making time.

Decision-making Accuracy: Scenario Decision-making Accuracy: Modality
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Figure 8. Decision-making accuracy for the scenario (left) and modality (right).

3.2 Physiological data

We examined how modality, scenario, and mental state affect pupil diameter, right wrist joint
angle, right ankle joint angle, GSR, and skin temperature. However, none of these factors signifi-
cantly affected pupil diameter, right wrist joint angle, right ankle joint angle, GSR, or skin tem-
perature.

While the main effect was not observed among various independent variables, there was a
marginal scenario X modality interaction effect (F (1, 4) =5.727, p = 0.075, np> = 0.589) on the
right wrist joint angle (Figure 9) . In a lane-keeping scenario, the visual signal (M = 4.658°, SEM
= 1.449) was correlated with a slightly greater change in the joint angle of the wrist when compared
to the tactile signal (M =-.043°, SEM = 1.449).
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12 Right Wrist Joint Angle: Modality x Scenario
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Figure 9. Right wrist joint angle as a function of modality and scenario.

Chapter 4: Conclusions and Recommendations

This study examined how informative takeover requests affect takeover performance in lane-
changing and lane-keeping scenarios across visual and tactile modalities under seven mental states.
First, this study examined how lane-changing and lane-keeping scenarios impact takeover perfor-
mance. The findings suggest that the scenario that required changing lanes resulted in higher de-
cision-making accuracy compared with the scenario that required maintaining the lane. However,
Dogan et al. (2019) suggested that although lane-changing scenarios (i.e., obstacles ahead) were
associated with shorter reaction times than lane-keeping scenarios (i.e., missing lane markings),
the increased mental workload in lane-changing scenarios may not lead to effective decision-mak-
ing. The different environmental settings used in these two studies might lead to this conflict (i.e.,
Dogan et al. (2019) adopted highway scenarios, and the current study adopts urban scenarios). For
example, Du et al. (2024) indicated that dealing with lane-changing situations on highways re-
sulted in poorer takeover performance (e.g., higher collision risk, higher arousal and stress) than
similar situations in urban scenarios. On the other hand, encountering lane-keeping scenarios on
highways resulted in better takeover performance (e.g., lower arousal and stress) compared with
urban scenarios. Another explanation is that in the lane-changing scenario, drivers receive an in-
formative takeover request about the danger and perceive the obstacle in their current lane, provid-
ing sufficient cues to make the appropriate decision. However, during the lane-keeping scenario,
obstacles are often located in adjacent lanes, which overlap the effectiveness of the informative
display (Martinez & Huang, 2022), leaving drivers without clear cues to rely on and resulting in
decreased accuracy. Additionally, this study also evaluated the effects of visual and tactile takeover
requests on takeover performance. The results indicated that tactile signals were associated with
slightly higher decision-making accuracy than visual signals. One explanation is that tactile in-
formative displays engage both sides of the body, helping users identify obstacles more effectively
than visual signals do. This finding aligns with earlier studies indicating that tactile stimuli can
effectively direct a user’s attention to a particular area compared with visuals (Lehtinen et al.,
2012; Liittgen & Heuer, 2012). Another possibility could be that the visual cue on the windshield
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might block part of the driver’s view. In contrast, the tactile display features a “gaze-free” benefit
(Graham, 1999), enabling the driver to perceive the real-life environment and the takeover request
simultaneously. The results among different mental states reveal no significant differences in take-
over performance. This finding suggests the informative display may help maintain driver situation
awareness across mental states, supporting decision-making in dynamic autonomous environ-
ments. Additionally, the findings across signal modality, scenario, and mental state on physiolog-
ical measurements also reveal no significant differences, suggesting that, when developing such
takeover requests, objective performance metrics, such as decision-making accuracy, could be pri-
oritized.

Some limitations need to be addressed in this study. First, as an exploratory pilot study, the
sample size may not provide enough statistical power. For example, although the results show
some trends in decision-making accuracy, the non-significant findings in physiological data might
be due to the limited sample size. Future research should increase the sample size to confirm these
findings. Additionally, the participants were primarily recruited from a specific college and within
a specific age range (i.e., 18-24 years old). However, the design of the human-machine interface,
such as takeover requests, is intended for the general population. To further validate this study,
future research should investigate the effects among different user groups, such as younger versus
older adults or novice drivers versus experienced drivers. Next, due to the experiment’s duration,
we could only examine the effects of visual and tactile modalities using a between-subjects design.
To gain a better understanding of both modalities, future studies should consider employing a
within-subjects design to examine the effects of each modality on individual participants. Lastly,
although the current study employed some validated methods, such as playing music or chatting
with participants to induce mental states, it remained unclear whether the mental state was suc-
cessfully induced. To address this, future studies could consider adding a brief survey during the
induction process to verify whether participants are in the corresponding mental state.

The findings of this study provide insights for developing human-machine interfaces that en-
hance safety across various mental states for future automated vehicles. Based on these insights,
when developing the informative takeover request, tactile feedback should be prioritized over vis-
ual feedback due to its advantages in redirecting attention to a specific area. In addition, the dif-
ferences in takeover performance shown in different scenarios indicate that it is important to create
an adaptive warning system for the various situations drivers encounter. Moreover, the non-sig-
nificant result between different mental states might indicate that the effectiveness of adopting
informative displays in the takeover request is stable and reliable. Given that this study is solely a
pilot study with a minimal sample size, the results should be interpreted cautiously. Overall, these
results deliver crucial evidence for engineers and designers to create advanced human-machine
interfaces in automation systems that enhance safety.
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